Mice Overexpressing Both Non-Mutated Human SOD1 and Mutated SOD1G93A Genes: A Competent Experimental Model for Studying Iron Metabolism in Amyotrophic Lateral Sclerosis
نویسندگان
چکیده
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by degeneration and loss of motor neurons in the spinal cord, brainstem and motor cortex. Up to 10% of ALS cases are inherited (familial, fALS) and associated with mutations, frequently in the superoxide dismutase 1 (SOD1) gene. Rodent transgenic models of ALS are often used to elucidate a complex pathogenesis of this disease. Of importance, both ALS patients and animals carrying mutated human SOD1 gene show symptoms of oxidative stress and iron metabolism misregulation. The aim of our study was to characterize changes in iron metabolism in one of the most commonly used models of ALS - transgenic mice overexpressing human mutated SOD1(G93A) gene. We analyzed the expression of iron-related genes in asymptomatic, 2-month-old and symptomatic, 4-month-old SOD1(G93A) mice. In parallel, respective age-matched mice overexpressing human non-mutated SOD1 transgene and control mice were analyzed. We demonstrate that the overexpression of both SOD1 and SOD1(G93A) genes account for a substantial increase in SOD1 protein levels and activity in selected tissues and that not all the changes in iron metabolism genes expression are specific for the overexpression of the mutated form of SOD1.
منابع مشابه
Metabolic progression markers of neurodegeneration in the transgenic G93A-SOD1 mouse model of amyotrophic lateral sclerosis.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons. Visualizing corresponding metabolic changes in the brain of patients with ALS with proton magnetic resonance spectroscopy ((1)H-MRS) may provide surrogate markers for an early disease detection, for monitoring the progression and for evaluating a treatment response. The...
متن کاملNpgRJ_Nn_1885 1..7
Here we report an in vitro model system for studying the molecular and cellular mechanisms that underlie the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Embryonic stem cells (ESCs) derived from mice carrying normal or mutant transgenic alleles of the human SOD1 gene were used to generate motor neurons by in vitro differentiation. These motor neurons could be maintained in lon...
متن کاملNon-cell-autonomous effect of human SOD1 G37R astrocytes on motor neurons derived from human embryonic stem cells.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by motor neuron death. ALS can be induced by mutations in the superoxide dismutase 1 gene (SOD1). Evidence for the non-cell-autonomous nature of ALS emerged from the observation that wild-type glial cells extended the survival of SOD1 mutant motor neurons in chimeric mice. To uncover the contribution of astrocytes ...
متن کاملProtective effects of cardiotrophin-1 adenoviral gene transfer on neuromuscular degeneration in transgenic ALS mice.
Amyotrophic lateral sclerosis (ALS) is mainly a sporadic neurodegenerative disorder characterized by loss of cortical and spinal motoneurons. Some familial ALS cases (FALS) have been linked to dominant mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1). Transgenic mice overexpressing a mutated form of human SOD1 with a Gly93Ala substitution develop progressive muscle wasting and p...
متن کاملEffect of genetic background on phenotype variability in transgenic mouse models of amyotrophic lateral sclerosis: a window of opportunity in the search for genetic modifiers.
Transgenic (Tg) mouse models of FALS containing mutant human SOD1 genes (G37R, G85R, D90A, or G93A missense mutations or truncated SOD1) exhibit progressive neurodegeneration of the motor system that bears a striking resemblance to ALS, both clinically and pathologically. The most utilized and best characterized Tg mice are the G93A mutant hSOD1 (Tg(hSOD1-G93A)1GUR mice), abbreviated G93A. In t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2015